曲线生成 | 图解贝塞尔曲线生成原理(附ROS C++/Python/Matlab仿真)

news/2025/2/21 14:57:11

目录

  • 0 专栏介绍
  • 1 贝塞尔曲线的应用
  • 2 图解贝塞尔曲线
  • 3 贝塞尔曲线的性质
  • 4 算法仿真
    • 4.1 ROS C++仿真
    • 4.2 Python仿真
    • 4.3 Matlab仿真

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 贝塞尔曲线的应用

贝塞尔曲线是一种数学曲线,由法国数学家皮埃尔·贝塞尔于1962年引入。它使用一组控制点来定义曲线的形状,这些控制点的位置和数量决定了曲线的特征。贝塞尔曲线的应用非常广泛:

  • 计算机图形学:贝塞尔曲线可以用于绘制平滑的曲线和曲面。在计算机图形学中,它们被广泛用于绘制二维和三维图形对象,如曲线、路径、字体等。贝塞尔曲线具有良好的平滑性和灵活性,在图形渲染和模型构建方面发挥着重要作用;
  • CAD 设计:贝塞尔曲线在计算机辅助设计中起到关键作用。设计师可以使用贝塞尔曲线创建和编辑复杂的曲线形状,如汽车外形、船体曲线、建筑物外观等。贝塞尔曲线的控制点可以通过拖动和调整来改变曲线的形状,使设计过程更加灵活和直观;
  • 动画和游戏开发:贝塞尔曲线提供了一种方便的方法来定义和控制动画路径和运动轨迹。动画师可以使用贝塞尔曲线来创建平滑的动画路径,让角色和物体按照指定的路径移动。在游戏开发中,贝塞尔曲线也常用于实现精确的物体运动轨迹和碰撞检测;
  • 字体设计:贝塞尔曲线被广泛应用于字体设计中。每个字母、数字或符号都可以由一组贝塞尔曲线组成,通过调整和连接这些曲线,可以创建出各种字体形状和风格。贝塞尔曲线的灵活性使得字体设计者能够轻松地创建出各种自然流畅的字符形状。

2 图解贝塞尔曲线

设平面上存在 n n n个离散的控制节点,则贝塞尔曲线的阶数 n − 1 n-1 n1。这 n n n个节点按某个顺序依次联结形成特征多边形,一个特征多边形将递归地确定一条以比例系数 t ∈ [ 0 , 1 ] t \in [0,1 ] t[0,1]为参数的贝塞尔曲线

在这里插入图片描述

如图所示为1阶贝塞尔曲线的生成过程,具体地,对于一阶贝塞尔曲线有

P 1 ( t ) = ( 1 − t ) p 0 + t p 1 \boldsymbol{P}_1\left( t \right) =\left( 1-t \right) \boldsymbol{p}_0+t\boldsymbol{p}_1 P1(t)=(1t)p0+tp1

其中控制节点 p i = [ x i , y i ] T \boldsymbol{p}_i=\left[ x_i,y_i \right] ^T pi=[xi,yi]T

对于二阶贝塞尔曲线,首先给定比例系数 t ∈ [ 0 , 1 ] t \in [0,1 ] t[0,1],使

∣ p 0 a ∣ ∣ p 0 p 1 ∣ = ∣ p 1 b ∣ ∣ p 1 p 2 ∣ = ∣ a q ∣ ∣ a b ∣ \frac{|\boldsymbol{p}_0\boldsymbol{a}|}{|\boldsymbol{p}_0\boldsymbol{p}_1|}=\frac{|\boldsymbol{p}_1\boldsymbol{b}|}{|\boldsymbol{p}_1\boldsymbol{p}_2|}=\frac{|\boldsymbol{aq}|}{|\boldsymbol{ab}|} p0p1p0a=p1p2p1b=abaq

其中 q \boldsymbol{q} q落在由 a \boldsymbol{a} a b \boldsymbol{b} b确定的一阶贝塞尔曲线上, a \boldsymbol{a} a b \boldsymbol{b} b分别落在由 p 0 \boldsymbol{p}_0 p0 p 1 \boldsymbol{p}_1 p1 p 1 \boldsymbol{p}_1 p1 p 2 \boldsymbol{p}_2 p2确定的一阶贝塞尔曲线上,因此 q \boldsymbol{q} q最终为二阶贝塞尔曲线上的一点,有

P 2 ( t ) = ( 1 − t ) a + t b \boldsymbol{P}_2\left( t \right) =\left( 1-t \right) \boldsymbol{a}+t\boldsymbol{b} P2(t)=(1t)a+tb

P 2 ( t ) = ( 1 − t ) 2 p 0 + 2 t ( 1 − t ) p 1 + t 2 p 2 \boldsymbol{P}_2\left( t \right) =\left( 1-t \right) ^2\boldsymbol{p}_0+2t\left( 1-t \right) \boldsymbol{p}_1+t^2\boldsymbol{p}_2 P2(t)=(1t)2p0+2t(1t)p1+t2p2

如图所示

在这里插入图片描述

递推地,有

P ( t ) = ∑ i = 0 n − 1 p i B i , n − 1 ( t ) , t ∈ [ 0 , 1 ] \boldsymbol{P}\left( t \right) =\sum_{i=0}^{n-1}{\boldsymbol{p}_iB_{i,n-1}\left( t \right)}, t\in \left[ 0,1 \right] P(t)=i=0n1piBi,n1(t),t[0,1]

其中 p i ( i = 0 , ⋯   , n − 1 ) \boldsymbol{p}_i\left( i=0,\cdots ,n-1 \right) pi(i=0,,n1)为控制节点的有序序列, B i , n ( t ) = C n i t i ( 1 − t ) n − i , t ∈ [ 0 , 1 ] B_{i,n}\left( t \right) =C_{n}^{i}t^i\left( 1-t \right) ^{n-i},t\in \left[ 0,1 \right] Bi,n(t)=Cniti(1t)ni,t[0,1]称为伯恩斯坦多项式(Bernstein Polynomial),可视为权重因子,即曲线上某点 P ( t ) \boldsymbol{P}\left( t \right) P(t)是控制节点序列的加权平均

3 贝塞尔曲线的性质

贝塞尔曲线具有非常多优良的性质,主要列举如下

  • 归一性:各项系数和为1
  • 凸包性:贝塞尔曲线始终被所有控制点形成的最小凸多边形所包含
  • 端点性:由于 B 0 , n ( 0 ) = B n , n ( 1 ) = 1 B_{0,n}\left( 0 \right) =B_{n,n}\left( 1 \right) =1 B0,n(0)=Bn,n(1)=1,所以贝塞尔曲线始于 p 0 \boldsymbol{p}_0 p0终于 p n \boldsymbol{p}_n pn,但不经过中间控制节点,即为逼近而非插值
  • 几何不变性:贝塞尔曲线的形状仅与特征多边形各顶点相对位置有关,与坐标系的选择无关
  • 变差伸缩性:若贝塞尔曲线特征多边形是一个平面图形,则平面内任意直线与贝塞尔曲线交点的个数不多于该直线与特征多边形的交点个数
  • 微分 P ′ ( t ) = n ∑ i = 1 n ( p i − p i − 1 ) B i − 1 , n − 1 ( t ) \boldsymbol{P}'\left( t \right) =n\sum\nolimits_{i=1}^n{\left( \boldsymbol{p}_i-\boldsymbol{p}_{i-1} \right) B_{i-1,n-1}\left( t \right)} P(t)=ni=1n(pipi1)Bi1,n1(t),即 n n n阶贝塞尔曲线的导数是 n − 1 n-1 n1阶贝塞尔曲线,控制节点为 q i = n ( p i + 1 − p i ) , i = 0 , ⋯   , n − 1 \boldsymbol{q}_i=n\left( \boldsymbol{p}_{i+1}-\boldsymbol{p}_i \right) , i=0,\cdots ,n-1 qi=n(pi+1pi),i=0,,n1。特别地, P ′ ( 0 ) = n ( p 1 − p 0 ) \boldsymbol{P}'\left( 0 \right) =n\left( \boldsymbol{p}_1-\boldsymbol{p}_0 \right) P(0)=n(p1p0) P ′ ( 1 ) = n ( p n − p n − 1 ) \boldsymbol{P}'\left( 1 \right) =n\left( \boldsymbol{p}_n-\boldsymbol{p}_{n-1} \right) P(1)=n(pnpn1),即贝塞尔曲线首末位置切线方向与特征多边形首末边方向一致

4 算法仿真

ROS_C_68">4.1 ROS C++仿真

核心代码如下

Points2d Bezier::generation(Pose2d start, Pose2d goal)
{
  double sx, sy, syaw;
  double gx, gy, gyaw;
  std::tie(sx, sy, syaw) = start;
  std::tie(gx, gy, gyaw) = goal;

  int n_points = (int)(helper::dist(Point2d(sx, sy), Point2d(gx, gy)) / step_);
  Points2d control_pts = getControlPoints(start, goal);

  Points2d points;
  for (size_t i = 0; i < n_points; i++)
  {
    double t = (double)(i) / (double)(n_points - 1);
    points.push_back(bezier(t, control_pts));
  }

  return points;
}

其中bezier函数实现了伯恩斯坦多项式求和

Point2d Bezier::bezier(double t, Points2d control_pts)
{
  size_t n = control_pts.size() - 1;
  Point2d pt(0, 0);
  for (size_t i = 0; i < n + 1; i++)
  {
    pt.first += _comb(n, i) * std::pow(t, i) * std::pow(1 - t, n - i) * control_pts[i].first;
    pt.second += _comb(n, i) * std::pow(t, i) * std::pow(1 - t, n - i) * control_pts[i].second;
  }
  return pt;
}

4.2 Python仿真

核心代码如下所示

def generation(self, start_pose: tuple, goal_pose: tuple):
	sx, sy, _ = start_pose
	gx, gy, _ = goal_pose
	n_points = int(np.hypot(sx - gx, sy - gy) / self.step)
	control_points = self.getControlPoints(start_pose, goal_pose)

	return [self.bezier(t, control_points) for t in np.linspace(0, 1, n_points)], \
		   control_points
def bezier(self, t: float, control_points: list) ->np.ndarray:
	n = len(control_points) - 1
	control_points = np.array(control_points)
	return np.sum([comb(n, i) * t ** i * (1 - t) ** (n - i) * 
		control_points[i] for i in range(n + 1)], axis=0)

在这里插入图片描述

4.3 Matlab仿真

核心代码如下所示

function curve = generation(start, goal, param)
    sx = start(1); sy = start(2);
    gx = goal(1); gy = goal(2);
    
    n_points =  hypot(sx - gx, sy - gy) / param.step;
    control_pts = getControlPoints(start, goal, param);
    
    curve = [];
    for t=0:1 / n_points:1
        curve = [curve; bezier(t, control_pts)];
    end
end
function curve_pt = bezier(t, control_pts)
    [m, ~] = size(control_pts);
    n = m - 1;
    pt_x = 0; pt_y = 0;
    for i=0:n
        pt_x = pt_x + nchoosek(n, i) * power(t, i) * power(1 - t, n - i) * control_pts(i + 1, 1);
        pt_y = pt_y + nchoosek(n, i) * power(t, i) * power(1 - t, n - i) * control_pts(i + 1, 2);
    end
    curve_pt = [pt_x, pt_y];
end

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

http://www.niftyadmin.cn/n/5325887.html

相关文章

如何使用Imagewheel搭建一个简单的的私人图床无公网ip也能访问

文章目录 1.前言2. Imagewheel网站搭建2.1. Imagewheel下载和安装2.2. Imagewheel网页测试2.3.cpolar的安装和注册 3.本地网页发布3.1.Cpolar临时数据隧道3.2.Cpolar稳定隧道&#xff08;云端设置&#xff09;3.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 4.公网访问测…

Java程序设计:必实验2 类的高级应用

&#xff08;1&#xff09;编写一个Athlete类。该类包含三个成员变量name、sport和medal&#xff0c;分别代表一个运动员的姓名、最擅长的运动项目名称和在2023年亚运会获得的奖牌数量。在该类中重写Object类的toString方法&#xff0c;当调用它重写的toString方法时&#xff0…

好书推荐丨AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀(北大社)

文章目录 写在前面关键点内容简介作者简介推荐理由粉丝福利写在后面 写在前面 本期博主给大家推荐一本Python量化交易实战类书籍&#xff1a; ChatGPT让量化交易师率飞起来&#xff01; 金融量化交易新模式一本专注于帮助交易师在AI时代实现晋级、提高效率的图书书中介绍了如…

儿童护眼台灯怎么选择?护眼台灯选购技巧分享

学生护眼台灯是很多家长关心的问题&#xff0c;尤其是在孩子学习的时候&#xff0c;不想让他们的眼睛受到损伤。但是市面上的台灯品牌众多&#xff0c;价格也不一&#xff0c;从不足百元到5、6千元甚至上万的都有&#xff0c;他们为此感到迷茫&#xff0c;那么儿童护眼台灯又应…

谭浩强【C语言程序设计】第二章习题详解

目录 ​编辑 1&#xff0c;什么是算法&#xff1f;试从日常生活中找3个例子&#xff0c;描述它们的算法。 2&#xff0c;什么叫结构化的算法&#xff1f;为什么要提倡结构化的算法&#xff1f; 3&#xff0c;试述3种基本结构的特点&#xff0c;请另外设计两种基本结构&…

[HTML]Web前端开发技术12(HTML5、CSS3、JavaScript )——喵喵画网页

希望你开心&#xff0c;希望你健康&#xff0c;希望你幸福&#xff0c;希望你点赞&#xff01; 最后的最后&#xff0c;关注喵&#xff0c;关注喵&#xff0c;关注喵&#xff0c;佬佬会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的…

想要在尼康相机上恢复已删除的照片?这几个方法请收好!

尼康是最知名的国际品牌之一&#xff0c;其数码相机产品深受众多摄影爱好者的喜爱。手持尼康相机&#xff0c;壮丽的风景和生动的人物都可以作为一幅幅惊艳的镜头被永远记录下来。 遗憾的是&#xff0c;尼康相机拍摄的照片意外丢失在某种程度上是不可避免的。原因有可能是误删…

解码 JWT 的有效负载

function decryptJWT(token: string): any {token token.replace(/_/g, /).replace(/-/g, );var json decodeURIComponent(escape(window.atob(token.split(.)[1])));return JSON.parse(json); }参考&#xff1a; Admin.NET